美国费城地区的铁路制动能量回收项目中,锂电池和Maxwell的超级电容器组成的混合储能系统不仅回收制动时的能量用于列车加速,而且还可将多余的储存能量供给所在区域的电力运营商,用于调节电网频率。这不仅提高了供电质量,对铁路运营商而言,还是额外的收入。
列车在运行中会产生巨大的动能,但在停靠站台的制动减速过程中,该能量通常是通过制动电阻消耗浪费掉。一种节约能源的设计是将该部分制动能量反送至电网,供给其他负荷使用。但该方案的缺陷是反送的能量若过大,则有可能造成电网局部电压过高。目前来说最有效的解决方案是使用储能设备回收制动能量,然后在列车启动时,释放该能量用于列车加速。这不仅能有效节约能量,而且能避免列车在制动和加速过程中对电网造成冲击。这样的方案已经成功地应用到城市的地铁和轻轨系统,并逐渐推广。但在铁路系统,利用储能系统回收列车制动时的能量还是一个较新的技术。
列车在刹车和加速时,时间短暂但功率很大。常规的电池满足不了大功率的运行需求。而这正是超级电容器的强项:它能大电流充放电,大功率运行。此外,若有频繁的列车启停,则要求用于能量回收的储能系统能够快速充放电,且充放电次数多,寿命长。和常规的通过化学反应产生和储存能量的电池不同,超级电容器的充放电过程是通过离子的移动而产生的,即是个物理过程。因此它的寿命很长,以Maxwell的超级电容器为例,其典型的充放电次数可达1百万次。此外静电场储能的机制使得它的充放电速度很快。因此,超级电容器完全可以满足列车频繁启停的要求。